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Abstract. The China–Pakistan Economic Corridor (CPEC) is one of the flagship projects of the One Belt One
Road Initiative, which faces threats from water shortage and mountain disasters in the high-elevation region, such
as glacial lake outburst floods (GLOFs). An up-to-date high-quality glacial lake dataset with parameters such as
lake area, volume, and type, which is fundamental to water resource and flood risk assessments and prediction
of glacier–lake evolutions, is still largely absent for the entire CPEC. This study describes a glacial lake dataset
for the CPEC using a threshold-based mapping method associated with rigorous visual inspection workflows.
This dataset includes (1) multi-temporal inventories for 1990, 2000, and 2020 produced from 30 m resolution
Landsat images and (2) a glacial lake inventory for the year 2020 at 10 m resolution produced from Sentinel-2
images. The results show that, in 2020, 2234 lakes were derived from the Landsat images, covering a total area of
86.31±14.98 km2 with a minimum mapping unit (MMU) of 5 pixels (4500 m2), whereas 7560 glacial lakes were
derived from the Sentinel-2 images with a total area of 103.70± 8.45 km2 with an MMU of 5 pixels (500 m2).
The discrepancy shows that Sentinel-2 can detect a large quantity of smaller lakes compared to Landsat due to
its finer spatial resolution.

Glacial lake data in 2020 were validated by Google Earth-derived lake boundaries with a median (± standard
deviation) difference of 7.66±4.96 % for the Landsat-derived product and 4.46±4.62 % for the Sentinel-derived
product. The total number and area of glacial lakes from consistent 30 m resolution Landsat images remain
relatively stable despite a slight increase from 1990 to 2020. A range of critical attributes has been generated in
the dataset, including lake types and mapping uncertainty estimated by an improved equation of Hanshaw and
Bookhagen (2014). This comprehensive glacial lake dataset has the potential to be widely applied in studies on
water resource assessment, glacial lake-related hazards, and glacier–lake interactions and is freely available at
https://doi.org/10.12380/Glaci.msdc.000001 (Lesi et al., 2022).
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1 Introduction

Glaciers in High Mountain Asia (HMA) play a crucial role
in regulating climate; supporting ecosystems; modulating the
release of freshwater into rivers; and sustaining municipal
water supplies (Wang et al., 2019; Viviroli et al., 2020), agri-
cultural irrigation, and hydropower generation (Pritchard,
2019; Nie et al., 2021). Most HMA glaciers are losing mass
in the context of climate change (Brun et al., 2017; Mau-
rer et al., 2019; Shean et al., 2020; Bhattacharya et al.,
2021); therefore, unsustainable glacier melt and the pass-
ing of peak water are reducing the hydrological role of
glaciers (Huss and Hock, 2018) and impacting downstream
ecosystem services, agriculture, hydropower, and other so-
cioeconomic values (Carrivick and Tweed, 2016; Nie et al.,
2021). The present and future glacier changes not only im-
pact the water supply for the downstream area but also alter
the frequency and intensity of glacier-related hazards, such
as glacial lake outburst floods (GLOFs) (Nie et al., 2018;
Rounce et al., 2020; Zheng et al., 2021), and rock and ice
avalanches (Shugar et al., 2021). Global glacial lake num-
bers and total area both increased between 1990 and 2018 in
response to glacier retreat and climate change (Shugar et al.,
2020a), affecting the allocation of freshwater resources. The
Indus is globally the most important and vulnerable water
tower unit where glaciers, lakes, and reservoir storage con-
tribute about two-thirds of the water supply (Immerzeel et al.,
2020). Ice-marginal lakes store ∼ 1% of total ice discharge
in Greenland and accelerate lake-terminating ice velocity by
∼ 25% (Carrivick et al., 2022). An increasing frequency and
risk of GLOFs (Nie et al., 2021; Zheng et al., 2021) is threat-
ening the Asian population and infrastructures in the moun-
tain ranges, such as the China–Pakistan Economic Corridor
(CPEC), a flagship component of the One Belt One Road
Initiative (Battamo et al., 2021; Li et al., 2021). The north-
ern section of the CPEC passes through the Pamir, Karako-
ram, Hindu Kush, and Himalaya mountains where droughts
and glacier-related hazards are frequent and severe (Hewitt,
2014; Bhambri et al., 2019; Pritchard, 2019), threatening lo-
cal people, and the existing, under-construction, and planned
infrastructures, such as highways, hydropower plants, and
railways. Understanding the risk posed by water shortage and
glacier-related hazards is a critical step toward sustainable
development for the CPEC.

Glacial lake inventories with a range of attributes bene-
fit water resource assessment and disaster risk assessment
related to glacial lakes (Wang et al., 2020; Carrivick et al.,
2022) and contribute to predicting glacier–lake evolution and
cryosphere–hydrosphere interactions under climate change
(Nie et al., 2017; Brun et al., 2019; Maurer et al., 2019;
Carrivick et al., 2020; Liu et al., 2020). Remote sensing is
the most viable way to map glacial lakes and detect their
spatiotemporal changes in the high-elevation zones where
in situ accessibility is extremely low (Huggel et al., 2002;
Quincey et al., 2007). Studies in glacial lake inventories us-

ing satellite observations have been heavily conducted at re-
gional scales recently, such as in the Tibetan Plateau (Zhang
et al., 2015), the Himalaya (Gardelle et al., 2011; Nie et al.,
2017), the HMA (Wang et al., 2020; Chen et al., 2021), the
Tien Shan (Wang et al., 2013), Alaska (Rick et al., 2022),
Greenland (How et al., 2021), and northern Pakistan (Ashraf
et al., 2017). However, the latest glacial lake mapping in
2020 is still absent along the CPEC. Among existing stud-
ies, Landsat archival images are the most widely used due
to their multi-decadal record of earth surface observations,
reasonably high spatial resolution (30 m), and publicly avail-
able distribution (Roy et al., 2014). Freely available Sentinel-
2 satellite images show more potential than Landsat in glacial
lake mapping and inventories due to their higher spatial res-
olution (10 m) and global coverage but have only been avail-
able since late 2015 (Williamson et al., 2018; Paul et al.,
2020). Glacial lake inventories using Sentinel-2 images are
relatively scarce at regional scales, and studies of the latest
glacial lake mapping, as well as comparisons of glacial lake
datasets derived from Sentinel-2 and Landsat observations,
are still lacking.

Discrepancies between various glacial lake inventories
(Zhang et al., 2015; Shugar et al., 2020a; Wang et al., 2020;
Chen et al., 2021; How et al., 2021) result from differences in
mapping methods, minimum mapping units, the definition of
glacial lakes, periods, data sources, and other factors. For ex-
ample, the manual vectorization method was widely adopted
in the earlier stages for its high accuracy. However, it is time-
consuming, is associated with high labor intensity and is
only practical at regional scales (Zhang et al., 2015; Wang
et al., 2020). Automated and semi-automated lake mapping
methods, such as multispectral index classification (Gardelle
et al., 2011; Nie et al., 2017; Zhang et al., 2018; How et
al., 2021), have been developed to improve the efficiency of
glacial lake inventories using optical images, although man-
ual modification is often unavoidable to assure the quality
of lake data impacted by cloud cover, mountain shadows,
seasonal snow cover, and frozen lake surfaces (Sheng et al.,
2016; Wang et al., 2017, 2018). Backscatter images from
synthetic aperture radar (SAR) (Wangchuk and Bolch, 2020;
How et al., 2021) were used to remove the impact of cloud
cover for lake mapping. Besides, other approaches such as
hydrological sink detection using DEM (How et al., 2021)
and land surface temperature-based detection methods (Zhao
et al., 2020) were also used for lake inventories. Different
classification methods impact the results of lake mapping and
monitoring. So far, we are lacking a unified standard for the
classification system of glacial lakes (Yao et al., 2018). Ex-
isting classification systems are generally used for research
purposes, mainly based on the relative positions of glacial
lakes and glaciers, the supply conditions of glaciers, and the
attributes of dams. In addition to different classification stan-
dards, the same type of glacial lakes may also have different
names given by different scholars. For example, ice-marginal
(Carrivick and Quincey, 2014; Carrivick et al., 2020), ice-
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Figure 1. Location of the study area associated with the distribution
of glaciers (RGI Consortium, 2017), mountains, basins, and popu-
lation (Rose et al., 2021) (a), and its location within the CPEC (b).

contact (Carrivick and Tweed, 2013), and proglacial (Nie
et al., 2017) lakes all represent glacial lakes that share the
boundary with glaciers. Glacial lakes in currently available
datasets have been traditionally categorized by their spatial
relationship with upstream glaciers (Gardelle et al., 2011;
Wang et al., 2020; Chen et al., 2021), and classification at-
tributes considering the formation mechanism and the prop-
erties of dams are rare or incomplete in the CPEC (Yao et
al., 2018; Li et al., 2020). Dam-type classification of glacial
lakes provide a crucial attribute for glacier–lake interactions
and risk assessment (Emmer and Cuøín, 2021). Therefore, an
up-to-date glacial lake dataset with critical, quality-assured
parameters (e.g., lake area, volume, and type) is necessary.

This study aims to (1) present an up-to-date glacial lake
dataset in the CPEC in 2020 using both Landsat 8 and
Sentinel-2 images to accurately document its detailed lake
distribution; (2) present two historical glacial lake datasets
for the CPEC to show the extent in 1990 and 2000 using con-
sistent 30 m Landsat images to reveal glacial lake changes at
three time periods (1990, 2000, and 2020); and (3) generate a
range of critical attributes for glacial lake inventories to ben-
efit studies on water resource evaluation, risk assessment of
GLOFs, and glacier–lake evolution modeling in the HMA.

2 Study area

The northern part of the CPEC is selected as the study area
(Fig. 1). The CPEC, originating from Kashgar of the Xin-
jiang Uygur Autonomous Region, China, and extending to
Gwadar Port, Pakistan (Ullah et al., 2019; Yao et al., 2020),
connects China and Pakistan via the only Karakoram High-
way. The study area covers all the drainage basins along
Karakoram Highway, starting from Kashgar and ending at
Thakot, with a total area of ∼ 125000 km2. The upper In-
dus basins beyond the Pakistani-administrated border are ex-
cluded from this study due to the spatial coverage of the
CPEC. The entire study area is divided into eight sub-basins,
covering most of the Karakoram with the highest elevation up
to 8611 m, western Himalaya and Tien Shan, eastern Hindu
Kush, and the Pamir mountains. The 9710 glaciers in the
study area cover a total area of 17 447 km2, and nearly 60 %
of glaciers are distributed in the Karakoram (5818 glaciers
with a total area of 14 067.52 km2) (RGI Consortium, 2017).
Most glaciers in the western Himalaya and eastern Hindu
Kush are losing mass in the context of climate change (Kääb
et al., 2012; Yao et al., 2012; Brun et al., 2017; Shean et
al., 2020; Hugonnet et al., 2021), whereas the glaciers in
the eastern Karakoram and Pamir have shown unusually lit-
tle changes, including unchanged, retreated, advanced, and
surged glaciers (Hewitt, 2005; Kääb et al., 2012; Bolch et
al., 2017; Brun et al., 2017; Shean et al., 2020; Nie et al.,
2021). The spatially heterogeneous distribution and changes
of glaciers are primarily explained as a result of differences
in the dominant precipitation-bearing atmospheric circula-
tion patterns that include the winter westerlies and the Indian
summer monsoon, their changing trends, and their interac-
tions with local extreme topography (Yao et al., 2012; Azam
et al., 2021; Nie et al., 2021).

3 Data sources

Both Landsat and Sentinel-2 images have been employed
to map glacial lakes between 1990 and 2020 in the CPEC
(Fig. 2). A total number of 71 Landsat Thematic Mapper
(TM), Thematic Mapper Plus (ETM+), and Landsat 8 Op-
erational Land Imager (OLI) images with a consistent spa-
tial resolution of 30 m were downloaded from the United
States Geological Survey Global Visualization Viewer (Glo-
Vis, https://glovis.usgs.gov/, last access: 20 December 2021)
to be used to create glacial lake inventories in 1990, 2000,
and 2020. High-quality Landsat 5 images around 2010 are
insufficient to cover the entire study area, so we were unable
to map lakes in 2010 due to Landsat 7’s scan-line corrector
errors and significant cloud covers. In addition, 39 Sentinel-2
images (23 scenes in 2020) were downloaded from Coper-
nicus Open Access Hub (https://scihub.copernicus.eu/, last
access: 8 December 2021) to produce the 10 m resolution
glacial lake inventory in 2020. All images used in this study
have been orthorectified before download, but we still find
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that one Sentinel-2 image was not well matched with Landsat
images, leading to the discrepancy between the two glacial
lake datasets. We manually georeferenced the shifted image
to minimize the difference between Sentinel- and Landsat-
derived glacial lakes.

Cloud and snow covers heavily affect the usability of op-
tical satellite images (Wulder et al., 2019) and their avail-
ability in the entire study area, so we took advantage of the
images acquired before and after each of the baseline years
– 1990, 2000, and 2020 – to construct the glacial lake in-
ventories. Only 4 images in 1990 (the largest covering the
study area), 16 images in 2000, and 23 images in 2020 were
used for matching baseline year. Spatially, high-quality im-
ages in given baseline years were preferentially chosen, or
we selected one or more alternative images acquired in ad-
jacent years to delineate glacial lakes by removing the effect
of cloud and snow covers. To minimize the impact of intra-
annual changes on glacial lakes, most of the used images
(82 % for Sentinel-2 and 75 % for Landsat) were acquired
from August to October in the given baseline year with cloud
coverage of< 20% for each image. For some specific scenes
where cloud cover exceeded the threshold of 20 %, we se-
lected more than one image to remedy the effect of cloud
contamination (Nie et al., 2010, 2017; Jiang et al., 2018).

Other datasets used include the Randolph Glacier
Inventory (RGI) version 6.0 (Pfeffer et al., 2014; RGI
Consortium, 2017) and the Glacier Area Mapping for
Discharge from the Asian Mountains (GAMDAM) glacier
inventory (Sakai, 2019). These two glacier datasets were
used to determine glacial lake types, such as ice-contact,
ice-dammed, and unconnected-glacier-fed lakes. The Shuttle
Radar Topography Mission Digital Elevation Model (SRTM
DEM), at a 1 arcsec (30 m) resolution (Jarvis et al., 2008),
was employed to extract the altitudinal characteristics of
the glacial lakes. The absolute vertical accuracy of the
SRTM DEM is 16 m (90 %) (Rabus et al., 2003; Farr
et al., 2007). We also applied other published glacial
lake datasets for comparative analysis. They include the
glacial lake inventories of HMA in 1990 and 2018, down-
loaded from https://doi.org/10.12072/casnw.064.2019.db
(Wang et al., 2021); the Third Pole region in 1990, 2000,
and 2010, publicly shared at http://en.tpedatabase.cn/
(last access: 8 August 2019) (Zhang, 2018); the
Tibetan Plateau from 2008 to 2017, accessed at
https://doi.org/10.5281/zenodo.4275164 (Chen et al., 2020);
and the entire world in 1990, 2000, and 2015, provided at
https://doi.org/10.5067/UO20NYM3YQB4 (Shugar et al.,
2020b). In addition, field survey data collected between
2017 and 2018 were also used to assist in lake mapping and
glacial lake type classification.

4 Glacial lake inventory methods

4.1 Definition of glacial lakes

We consider a glacial lake as one that formed as a result
of modern or ancient glaciation. Contemporary glacial lakes
are easily recognized using a combination of glacier inven-
tories and remote sensing images. Ancient glacial lakes can
be identified from periglacial geomorphological characteris-
tics, including moraine remnants and U-shaped valleys that
are discernible from satellite observations (Post and Mayo,
1971; Westoby et al., 2014; Nie et al., 2018; Martín et al.,
2021). A 10 km buffering distance of RGI 6.0 glacier bound-
aries that has been widely used in previous studies (Zhang et
al., 2015; Wang et al., 2020) was created to help map glacial
lakes. A few glacial lakes in the study area (a total of 84 lakes
for the Sentinel-2 dataset and 55 lakes for the Landsat dataset
in 2020) beyond the buffering zone, located near buffering
boundaries, were intentionally included due to clear evidence
of glaciation (Fig. 3). Landslide-dammed lakes (Chen et al.,
2017) in the buffering zone were excluded from our inven-
tories because of their irrelevance to glaciation. All glacial
lakes in the study area were mapped according to our def-
inition. We were able to implement this definition by care-
fully leveraging the spectral properties of glacial lakes and
the periglacial geomorphological features that are often evi-
dent in remote sensing images (see more in Sect. 4.3 and 4.4).

4.2 Interactive lake mapping

A human-interactive and semi-automated lake mapping
method (Wang et al., 2014; Nie et al., 2017, 2020) was
adopted to accurately extract glacial lake extents using Land-
sat and Sentinel-2 images, based on the Normalized Differ-
ence Water Index (NDWI) (Mcfeeters, 1996). The NDWI
uses the green and near-infrared bands and is calculated us-
ing the following equation:

NDWI=
BandGreen−BandNIR

BandGreen+BandNIR
, (1)

where the green band and near-infrared band were provided
by both Landsat and Sentinel multispectral images.

Specifically, the method calculated the NDWI histogram
based on the pixels with each user-defined and manually
drawn region of interest. The NDWI threshold that separates
the lake surface from the land was interactively determined
by screening the NDWI histogram against the lake region in
the imagery (Wang et al., 2014; Nie et al., 2020). This way,
the determined NDWI threshold can be well-tuned to adapt
to various spectral conditions of the studied glacial lakes. The
raster lake extents segmented by the thresholds were then au-
tomatically converted to vector polygons. We first completed
the glacial lake inventory in 2020 using this interactive map-
ping method, and the 2020 inventory was then used as a ref-
erence to facilitate the lake mapping for other periods.
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Figure 2. Acquisition of years and months of Landsat and Sentinel-2 images selected for glacial lake inventories. The bubble size indicates
the available high-quality image number.

Figure 3. The 10 km buffer zone of RGI 6.0 glacier boundaries (a) and Sentinel-derived glacial lakes located near buffering boundary within
the study area (b).

The minimum mapping unit (MMU) was set to 5 pix-
els for both Landsat (0.0045 km2) and Sentinel-2 images
(0.0005 km2) in this study. The MMU determines the total
number and area of glacial lakes in the dataset and varies in
the previous studies, such as 3 pixels (Zhang et al., 2015),
6 pixels (Wang et al., 2020), or 9 pixels (Chen et al., 2021)
for a regional scale or 55 pixels (Shugar et al., 2020a) for a
global scale. While a smaller threshold leads to a large num-
ber of lakes mapped, it also generates larger mapping noises
or uncertainties. Considering this signal–noise balance and
our focus on identifying prominent glacier–lake dynamics in
the study area, we opted to use 5 pixels as the MMU for both
Landsat and Sentinel-2 images.

Several procedures were taken to assure the quality assur-
ance and quality control for lake mapping, including (1) vi-
sual inspection and modification using the threshold-based
mapping method for each lake according to Landsat and
Sentinel-2 images and Google Earth at a finer scale over-

laying preliminarily lake boundary extraction at the given
period; (2) time series check for Landsat-derived glacial
lake datasets from 1990 and 2020 and cross-check between
Landsat- and Sentinel-2-derived lake datasets in 2020 to re-
duce errors of omission and commission; (3) topological val-
idation of glacial lake mapping, such as repeated removal and
elimination of small sliver polygons; and (4) logical check
for lake types between two classification systems of glacial
lakes. False lake extents resulting from cloud or snow cover,
lake ice, and topographic shadows (Nie et al., 2017, 2020)
were modified using the previous semi-automated mapping
method based on alternative images acquired in adjacent
years. Those procedures were time-consuming but helped to
minimize the effect of cloud and snow covers, and lake map-
ping errors, and to maximize the quality of the produced lake
product and the derived glacial lake changes.
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Figure 4. Sketch estimating the actual edge pixels for uncer-
tainty calculation of individual glacial lakes (with a and without
islands b).

4.3 Classification of glacial lakes

Two glacial lake classification systems (GLCSs) have been
established based on the relationship of the interaction be-
tween glacial lakes and glaciers, as well as lake forma-
tion mechanism and dam material properties. In the first
GLCS (GLCS1), glacial lakes were classified into four types
based on their spatial relationship to upstream glaciers:
supraglacial, ice-contact, unconnected-glacier-fed lakes, and
non-glacier-fed lakes according to Gardelle et al. (2011)
and Carrivick et al. (2013). Alternatively, by combining
the formation mechanism of glacial lakes and the prop-
erties of natural dam features, glacial lakes were classi-
fied into five categories (herein named GLCS2) modified
from Yao’s classification system (2018): supraglacial, end-
moraine-dammed, lateral-moraine-dammed, glacial-erosion
lakes, and ice-dammed lakes. Subglacial lakes were excluded
due to the mapping challenge from spectral satellite images
alone. Characterization and examples of each type are pro-
vided in Tables 1 and 2. Individual glacial lakes were cate-
gorized into the specific types for each GLCS according to
available glacier inventory data, and geomorphological and
spectral characteristics were interpreted from Landsat and
Sentinel images and Google Earth. The synergy of these two
GLCSs is beneficial to predicting glacier–lake evolutions and
providing fundamental data for water resource and glacial
lake disaster risk assessment.

4.4 Attributes of glacial lake data

A total of 18 attribute fields were input into our glacial
lake datasets (Table 3). They include lake location (longi-
tude and latitude), lake elevation (centroid elevation), orbital
number of the image source, image acquisition date, lake
area, lake perimeter, lake types of the two GLCSs, mapping
uncertainty, lake water volume and the country, sub-basin,
and mountain range associated with the lake. Among the at-
tributes, lake location was calculated based on the centroid of
each glacial lake polygon associated with the DEM; N rep-

resents northing and E represents easting. The orbital num-
ber of the image source was filled with the corresponding
satellite image, with the codes expressed as “PxxxRxxx” or
“Txxxxx”, where P and R indicate the path and row for Land-
sat image and T represents the tile of Sentinel-2 image as-
sociated with five-digit code of the military grid reference
system. SceneID indicated identifying information of the im-
age source for Landsat or Sentinel-2, consisting of the orbital
number, sensor ID, and acquisition date (YYYYMMDD) for
Landsat image or the orbital number and acquisition date
(YYYYMMDD) for Sentinel-2 image. Area and perimeter
were automatically calculated based on glacial lake extents.
Lake water volume was estimated by an area–volume em-
pirical equation (Cook and Quincey, 2015). Lake types were
attributed using the characterization and interpretation marks
described in Sect. 4.3. Mapping uncertainty was estimated
using our modified equation which will be introduced in
Sect. 4.5 and the Appendix tutorial. The located country, sub-
basin, and mountain range of each glacial lake were identi-
fied by overlapping the geographic boundaries of countries,
basins, and mountain ranges.

4.5 Error and uncertainty assessment

4.5.1 Improved uncertainty estimating method

We modified the equation of Hanshaw and Bookhagen
(2014) that had been used to calculate lake area mapping un-
certainty. Lake perimeter and displacement error are widely
used to estimate the uncertainty of glacier and lake map-
ping from satellite observation (Carrivick and Quincey, 2014;
Hanshaw and Bookhagen, 2014; Wang et al., 2020). Han-
shaw and Bookhagen (2014) proposed an equation to calcu-
late the error of area measurement by the number of edge pix-
els of the lake boundary multiplied by half of a single pixel
area. The number of edge pixels is simply calculated by the
perimeter divided by the grid size. The equation is expressed
below:

Error (1σ )=
P

G
× 0.6872×

G2

2
, (2)

D =
Error (1σ )

A
× 100%, (3)

where G is the cell size of the remote sensing imagery (10 m
for Sentinel-2 image and 30 m for Landsat image). P is the
perimeter of individual glacial lake (m), and the coefficient
of 0.6872 (1σ ), which means nearly 69 % of the edge pix-
els are subject to errors (Hanshaw and Bookhagen, 2014),
was chosen assuming that area measurement errors follow a
Gaussian distribution. Relative error (D) was calculated by
Eq. (3), in which A is the area of an individual glacial lake.

In the original Eq. (2), the number of edge pixels varies by
the shape of the lake and is indicated by P

G
. However, the pix-

els in the corner are double-counted (Fig. 4). The total num-
ber of repeatedly calculated edge pixels equals the number
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Table 1. A classification system of glacial lake types (GLCS1) according to the relationship between glacial lakes and glaciers (© Google
Earth 2019). Glacier outlines are from RGI 6.0 (RGI Consortium, 2017), and the yellow marker represents the target lake.

of inner nodes. Therefore, we adjusted the calculation of the
actual number of edge pixels as the maximum of edge pixels
(P
G

) subtracting the number of inner nodes. Accordingly, the
equation of uncertainty estimation for lake mapping is mod-
ified as below:

Error (1σ )=
(
P

G
−NInner

)
× 0.6872×

G2

2
, (4)

where NInner is the number of inner nodes (inflection points)
of each lake. The modified equation is also suitable for lakes
with islands (as illustrated in Fig. 4b).

For polygons without islands (Fig. 4a), use the following
equation:

NInner =

(
NTotal− 4− 1

2

)
. (5)

NTotal is the total number of nodes, including both the outer
and inner. NTotal is calculated using the “Field Calculator”

in ArcGIS; in some cases, it is necessary to remove the re-
dundant nodes before calculating the total number of nodes
(see the Appendix for more details). An inner node is a poly-
gon vertex where the interior angle surrounding it is greater
than 180◦. An outer node is the opposite of the inner node,
where the interior angle is less than 180◦. We found that the
outer nodes are usually four more than the inner nodes in our
glacial lake dataset. The total nodes in ArcGIS contain one
overlapping node to close the polygon, meaning the endpoint
is also the start point. This extra count was deleted from the
calculation (Eq. 5).

For polygons with an island (Fig. 4b), use the following
equation:

NInner =

(
NTotal− (NIsland+ 1)× 5

2

)
. (6)

NIsland is the number of islands within each polygon. A cal-
culation method of NIsland is given in the Appendix.
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Table 2. A classification system of glacial lake types (GLCS2) according to the formation mechanism of glacial lakes and dam material
properties (© Google Earth 2019). The glacier outlines from RGI 6.0 (RGI Consortium, 2017), and the yellow marker represents the target
lake.

4.5.2 Validation of glacial lake mapping

A total of 89 glacial lakes were selected by stratified ran-
dom sampling and manually digitized based on the Google
Earth images circa 2020 with a spatial resolution of ∼ 2 m
acquired from WorldView, GeoEye, Pléiades, etc. satellites
(© 2022 Maxar technologies and © 2022 CNES/Airbus) to
further validate the absolute error of our glacial lake products
in 2020 due to lacking field measurements for glacial lakes
in the study area. During the sampling, we set a minimum

lake area to be 4500 m2 and a relative difference between
Landsat- and Sentinel-derived lake areas of less than 18 %
(nearly equaling the average relative error of ±17.36 % for
Landsat lake mapping) to minimize the effect of lake changes
from multi-temporal satellite observations circa 2020. The
89 sample lakes range from 0.005 to 0.802 km2 with a me-
dian (standard deviation) size of 0.047±0.134 km2 and a to-
tal area of 8.033 km2 for Landsat-derived datasets and range
from 0.005 to 0.849 km2 with a median (standard deviation)
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Table 3. Attributes of glacial lake dataset.

Field name Type Description Note

FID Object ID Unique code of glacial lake Number

Shape Geometry Feature type of glacial lake Polygon

Latitude String Latitude of the centroid of glacial lake polygon Degree minute second

Longitude String Longitude of the centroid of glacial lake poly-
gon

Degree minute second

Elevation Double Elevation of the centroid of glacial lake polygon Unit: meters above sea level

SceneID String SceneID of image source for Landsat or
Sentinel-2

PxxxRxxx_xxxDYYYYMMDD or
Txxxxx_YYYYMMDD

ACQDATE String The acquisition date of the source image YYYYMMDD

GLCS1 String The first classification system of glacial lakes
based on the relationship of interaction between
glacial lakes and glaciers

Supraglacial, ice-contact, unconnected-
glacier-fed and none-glacier-fed

GLCS2 String The second classification system of glacial
lakes is based on lake formation mechanism
and dam material properties

Supraglacial, end-moraine-dammed,
lateral-moraine-dammed, glacial-
erosion and ice-dammed

Basin String Basin name where the glacial lake is located in

Mountain String Mountain name where the glacial lake is lo-
cated in

Country String Country name where the glacial lake is located
in

Perimeter Double The perimeter of the glacial lake boundary Unit: meters

Area Double Area of glacial lake coverage Unit: square meters

AreaUncer Double Area uncertainty of glacial lake mapping esti-
mated based on a modified equation of Han-
shaw and Bookhagen (2014)

Unit: square meters

Operator String The operator of the glacial lake dataset Muchu Lesi

Examiner String Examiner of glacial lake dataset Yong Nie

Volume Double The water volume of a glacial lake estimated by
an area–volume empirical equation

Unit: cubic meters

size of 0.045± 0.144 km2 and a total area of 8.447 km2 for
Sentinel-derived datasets.

5 Results

5.1 Glacial lake distribution and changes observed from
Landsat

We mapped 2234 glacial lakes in 2020 across the studied
CPEC from Landsat 8 images, with a total area of 86.31±
14.98 km2 (Fig. 5a and b). Unconnected-glacier-fed lakes
are dominant in the first classification system, followed by
non-glacier-fed lakes (Fig. 6), whereas glacial-erosion lakes
dominate at both number (1478) and area (57.02 km2) in

the second classification system (Fig. 7), followed by end-
moraine-dammed lakes and supraglacial lakes. Among the
classified lakes, 137 are ice-contact lakes and cover an area
of 5.56 km2, implying a higher mean size of ice-contact lakes
than supraglacial lakes.

The total number and area of glacial lakes in the study re-
main relatively stable with a slight increase between 1990
and 2020, and the changes in count and area among vari-
ous types of glacial lakes vary substantially (Figs. 6 and 7).
From 1990 to 2020, the total number of glacial lakes in-
creased by 80 (or 3.70 %), while the area grew by 1.21 km2

(or 1.42 %). In GLCS1, unconnected-glacier-fed lakes have
the largest increase in number, followed by ice-contact and
non-glacier-fed lakes, whereas supraglacial lakes decreased
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Figure 5. Distribution of glacial lakes in 2020 extracted from Landsat (a, b) and Sentinel-2 (c, d) images. Panels (a) and (c) are classified
by GLCS1 and GLCS2 for panels (b) and (d).

Figure 6. The number and area of different types of glacial lakes are classified based on the condition of glacier supply in the study area
(GLCS1). The outermost ring represents glacial lake data for 2020, the middle ring for 2000 and the innermost ring for 1990. Lake number
and area in 2020 were selected as references, meaning a concept of “100 %” for a complete ring. Labeled values are scaled in degrees rather
than the radius of rings.
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Figure 7. The number and area of different types of glacial lakes are classified based on glaciation and the nature of the dam in the study area
(GLCS2). The outermost ring represents glacial lake data for 2020, the middle ring for 2000 and the innermost ring for 1990. Lake number
and area in 2020 were selected as references, meaning a concept of “100 %” for a complete ring. Labeled values are scaled in degrees rather
than the radius of rings.

by 62 in count. Ice-contact lakes expanded by 1.24 km2

(equaling an increase of 26 % in ice-contact lakes), con-
tributing one-third of the total area increase. Supraglacial
lakes decreased by 0.85 km2 in area, whereas the areas
of unconnected-glacier-fed and non-glacier-fed lakes re-
mained stable as a result of disconnections from glaciers
(Fig. 6). In GLCS2, end-moraine-dammed lakes increased
by 2.48 km2 and contributed most of the glacial lake area
expansion, whereas supraglacial, ice-dammed, and lateral-
moraine-dammed lakes decreased slightly in both number
and area. Glacial-erosion lakes accounted for the maximum
percentage (about 66 % for both count and area) in each pe-
riod and remained stable (Fig. 7).

5.2 Glacial lake distribution observed from Sentinel-2

Sentinel-derived results show that there are 7560 glacial
lakes (103.70± 8.45 km2) in 2020 across the entire CPEC
under an MMU of 5 pixels (500 m2). Compared with the
Landsat-derived product, glacial lakes from Sentinel-2 have
similar spatial distribution characteristics (Fig. 5); mean-
while, a larger quantity of glacial lakes, with more accurate
boundaries and a greater total lake area, were generated from
Sentinel-2 images (Table 4). The smallest size class (0.0005–
0.0045 km2) contains the maximum lake number (4969) but
the least lake area (7.73± 2.62 km2), which is not available
in the Landsat-derived lake data due to a coarser spatial res-
olution. In each size class, the overlap ratios are greater than
85 % in count and area, and there are also a higher number
and larger area of glacial lakes from Sentinel images than of
Landsat images. Sentinel-2 images (10 m) with a finer spa-
tial resolution produce more glacial lakes than those from
Landsat images (30 m). The discrepancy is mainly attributed
to the inconsistency of spatial resolutions and image acquisi-
tion dates, as discussed in Sect. 6.2.

6 Discussions

6.1 Uncertainty and error of lake mapping

The uncertainty estimated from our improved equation
shows that the relative error of individual glacial lakes de-
creases when lake size increases or the cell size of remote
sensing images reduces (Lyons et al., 2013; Carrivick and
Quincey, 2014) (Fig. 8). Total area errors of glacial lakes in
the study area are approximately ±14.98 and ±8.45 km2 in
2020 for Landsat and Sentinel-2 datasets, respectively, and
the average relative errors are ±17.36 % and ±8.15 %. Gen-
erally, small lakes have greater relative errors. For example,
the mean relative error is 35.38 % for Landsat-derived glacial
lakes between 0.0045 and 0.1 km2 and 10.63 % for glacial
lakes greater than 0.1 km2. The mean area error of Sentinel-
derived glacial lakes is almost one-third of that extracted
from Landsat images for glacial lakes of all or specific size
groups. Because the relative error was estimated as a func-
tion of satellite image spatial resolution and lake perimeter,
the calculated error for a large lake is proportionally smaller
than that of a small lake (Salerno et al., 2012), and the error
for a Landsat-derived lake is naturally greater than that of a
Sentinel-derived lake in the same size group.

Our Landsat- and Sentinel-derived glacial lake dataset
match well lake boundaries in Google Earth higher-
resolution images (Fig. 9). The mean difference in area is
0.005 km2 between Landsat- and Google Earth-derived lakes
and 0.001 km2 between Sentinel- and Google Earth-derived
lakes, and major validation samples (84/89) are within the
confidence interval of 95 %, indicating high accuracy in lake
mapping (Fig. 9c and d). The error of 89 sample lakes is
5.48 % of the total area for Landsat- and Google Earth-
derived data and 0.61 % for Sentinel- and Google Earth-
derived data. The median (± standard deviation) in a dis-
crepancy of the individual lake area is 7.66± 4.96 % for
Landsat- and Google Earth-derived data and 4.46± 4.62 %
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Table 4. Count and area of glacial lakes mapped from Sentinel-2 and Landsat images in 2020 in various size classes.

Lake size Glacial lakes from Sentinel-2 Glacial lakes from Landsat Overlap
(km2) count (km2) count (km2) (%)

0.0045–0.05 2182 (35.52± 3.72) 1870 (31.47± 9.57) 85.70 (88.60)
0.05–0.1 237 (16.37± 0.89) 204 (14.07± 2.18) 86.08 (85.95)
0.1–0.2 122 (16.88± 0.68) 115 (15.91± 1.83) 94.26 (94.25)
≥ 0.2 50 (27.20± 0.54) 45 (24.86± 1.40) 90.00 (91.40)

Total 2591 (95.97± 5.83) 2234 (86.31± 14.98) 86.22 (89.93)

Note: second column excludes 4969 (7.73± 2.62 km2) lakes in the 0.0005 to 0.0045 km2 range. Overlap (%) represents the
ratios between our Landsat-derived dataset and Sentinel-derived product in count and area, respectively.

Figure 8. The estimated relative error for glacial lakes of all or specific size ranges in the study area. Error estimation is based on the
modified equation and lake data extracted from Landsat (a) and Sentinel-2 images (b).

for Sentinel- and Google Earth-derived data. Our glacial
lake dataset shows satisfactory mapping accuracy, although
Sentinel-derived lake data perform more accurately than
those from Landsat images. We also validated the sam-
pling of 89 Landsat-derived lakes by the existing Landsat-
extracted lake data produced by Wang et al. (2020). A total
of 83 lakes are available in Wang’s data with a mean differ-
ence of 0.005 km2 in the lake area (Fig. A8). This also shows
an improvement in our lake product in contrast to the existing
dataset.

6.2 Comparison of Sentinel- and Landsat-derived
products

Glacial lakes from Landsat and Sentinel-2 images have
high consistency in number and area with overlap rates
from approximately 86 % to 94 % for all lakes greater than
0.0045 km2 (Table 4), indicating a good potential for coor-
dinated utility with Landsat archived observation (Fig. 10).
Lake extents extracted from Landsat and Sentinel images
match well for various types and sizes (Figs. 10 and 11, Ta-
ble 4). The best consistency rate reaches 94 % for the glacial
lakes between 0.1 and 0.2 km2. The difference in the area of
glacial lakes extracted from Landsat and Sentinel-2 images
generally lies within the uncertainty ranges.
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Figure 9. Distribution of the validation sample (a), visual comparison of glacial lakes derived from Landsat and Sentinel-2 images overlaying
Google Earth imagery (© Google Earth 2019) in a zoomed in site (b), and differences between our glacial lake product (mapped from Landsat
and Sentinel-2 images) and the validation reference (digitized from Google Earth at a finer scale) (c, d).

The spatial resolution of satellite images plays a primary
role in the discrepancies in count and area of glacial lakes
extracted from Landsat (30 m) and Sentinel-2 (10 m) obser-
vations. Due to a finer spatial resolution, Sentinel-2 images
can extract more glacial lakes and more accurate extents than
those from Landsat images. We set the same 5 pixels as the
MMU for both Landsat and Sentinel-2 images, which cor-
responds to a minimum area of 0.0045 and 0.0005 km2, re-
spectively. The minimum mapping area results in generating
nearly 5000 more lakes from Sentinel-2 images than from
Landsat images, causing the greatest discrepancy in number,
such as Fig. 11. Small lakes such as supraglacial lakes play an
important role in analyzing glacier evolution and supraglacial
drainage systems (Liu and Mayer, 2015; Miles et al., 2018),
implying a potential of our dataset to be applied in studies of
glacier–lake evolutions. Meanwhile, Sentinel-2 images can
depict boundaries of glacial lakes with lower uncertainty, as
some small islands and narrow channels (Fig. 11b and c)
were mapped from Sentinel-2 imagery that were unable to
be detected in Landsat imagery.

In addition to the difference in image resolution, differ-
ent acquisition dates between Sentinel-2 and Landsat im-
ages can also contribute to the discrepancy between those
two glacial lake datasets. The total number of supraglacial
lakes and ice-dammed glacial lakes are less than 300, but
those lakes are controlled by glacier movement and temper-
ature changes (Liu and Mayer, 2015; Miles et al., 2018),
which vary faster with time than relatively stable glacial-
erosion and moraine-dammed lakes. Acquiring same-day im-
ages from the two sensors was not always possible due to
the impacts of cloud contaminations, topographic shadows,
snow cover, and revisit periods (Williamson et al., 2018; Paul
et al., 2020). Despite our efforts of leveraging all available
high-quality images, the overlap of acquisition dates between
Landsat and Sentinel-2 images for the same location is rela-
tively low (only 7 scenes of Sentinel-2 images or 112 glacial
lakes in 2020) in this study area, and the consequential tem-
poral gaps led to a difference in the number and area of the
derived glacial lakes. As exemplified in Fig. 11d, the mapped
supraglacial lakes in the same location exhibit a considerable
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Figure 10. High consistency of lake extents extracted from Land-
sat and Sentinel-2 images. Lake types shown include a supraglacial
lake (a), a glacier-fed moraine-dammed lake (b), an unconnected
glacial-erosion lake without glacier melt supply (c) and a glacier-
fed moraine-dammed lake (d).

discrepancy, which is likely a joint consequence of both sen-
sor difference and glacial lake evolution.

6.3 Comparison with the previous similar datasets

An increasing number of glacial lake datasets have been
released over the past years, and most of them were pro-
duced from long-term Landsat archives. Regional glacial
lake datasets using Sentinel images are scarce. The lack of
Sentinel-derived glacial lake data in the study area makes
it impossible to compare. Here we selected four available
glacial lake datasets to compare with our Landsat-derived
dataset at the same MMU and study area.

We provide the latest glacial lake dataset (in 2020) and the
most long-term 30 m Landsat observation (1990 to 2020) for
this study, with a range of critical attributes including two
types of classification systems. Within the same study area,
our 2020 glacial lakes appear to be closest to the 2018 dataset
produced by Wang et al. (2020), with the highest overlap
of greater than 91 % in count at the MMU of 5400 m2 or 6
pixels (Table 5). Wang’s dataset (2020) contains many large
landslide-dammed lakes that are excluded in our glacial lake
mapping, so their total glacial lake area is greater than ours.
The overlapping rates between Wang’s glacial lakes (2020)
in 1990 and ours are more than 83 % in count. However,
their results show a distinct increase of glacial lakes in num-
ber and area between 1990 and 2018 (Wang et al., 2020),

whereas our data show a more stable change between 1990
and 2020. One possible reason is that manually delineat-
ing glacial lakes twice by different operators during Wang’s
lake mapping (2020) exacerbates the errors of mapping. An-
other reason is that their data contain landslide-dammed
lakes that fluctuate greatly with time and expanded recently.
One example is Attabad Lake (located at 36◦18′ 22.33′′ N,
74◦49′ 34.36′′ E).

The second highest overlapping rate is approximately
59 % for 2008 and 58 % for 2017 in count compared with
Chen’s data (Chen et al., 2021). Similarly, the overlapping
rate between Shugar’s dataset (2020a) and ours is lower than
43 % in count at the MMU of 50 000 m2. The dataset from
Zhang et al. (2015) shows fewer glacial lakes in 1990 and
2000 at the same MMU of 5 pixels. Our product has more
lakes than each of the other four products at nine time peri-
ods. By inspecting their dataset, we attributed this anomalous
discrepancy to a range of glacial lakes that were missing due
to a lack of thorough cross-check quality assurance during
their lake mapping over a larger study area. And those addi-
tional glacial lakes show an improvement of our product in
contrast to the previous similar datasets. Our Landsat-derived
glacial lake dataset has been visually cross-checked over
three time periods after the step of threshold-based semi-
automated lake mapping and has also been visually validated
by Sentinel-derived glacial lakes. Through this series of qual-
ity assurance, we aim at delivering one of the most reliable
multi-decadal glacial lake products for this study area.

Other factors, such as image quality and acquisition dates,
mapping methods, and a quality assurance workflow, might
also lead to discrepancies between the glacial lake datasets.
Despite such discrepancies, an increasing number of pub-
licly shared datasets benefit potential users to select the most
suitable one for their objectives. Herein, we provide an up-
to-date glacial lake dataset derived from both Landsat and
Sentinel-2 observations, which further increased the avail-
ability of glacial lake datasets for water resource and GLOF
risk assessment, predicting glacier–lake evolutions (Carriv-
ick et al., 2020) in the context of climate change.

6.4 Limitation and updating plan

We would like to acknowledge several limitations of our
glacial lake dataset, largely due to the availability of high-
quality satellite images in the study area and inadequate field
survey data (Wang et al., 2020; Chen et al., 2021). First, it
is unlikely for one to collect enough good-quality images
within 1 calendar year for the entire study area due to the high
possibility of cloud or snow cover. Even though the capacity
of repeat observations for Landsat 8 OLI and Sentinel-2 in-
creased (Roy et al., 2014; Williamson et al., 2018; Wulder et
al., 2019; Paul et al., 2020), the 2020 glacial lake dataset has
to employ images acquired in adjacent years besides 2020.
Most images used from Landsat and Sentinel-2 platforms
were imaged in autumn, and some images taken between
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Figure 11. The discrepancy of lake extents extracted from Landsat and Sentinel-2 images.

Table 5. Comparison between our Landsat-based mapping and other third-party Landsat-based glacial lake datasets in the study area.

Baseline year Method MMU Count Count Ratio Reference
(them/us) (them/us) m2 (pixels) (them) (us) (%)

1990/1990 Manual/semi-automated 5400 (6) 1720 2069 83.13 Wang et al. (2020)
1990/1990 Automated/semi-automated 50 000 (55) 145 363 39.94 Shugar et al. (2020a)
1990/1990 Manual/semi-automated 4500 (5)∗ 622 2154 28.88 Zhang et al. (2015)
2000/2000 Manual/semi-automated 4500 (5)∗ 724 2184 33.15 Zhang et al. (2015)
2000/2000 Automated/semi-automated 50 000 (55) 155 361 42.94 Shugar et al. (2020a)
2008/2000 Automated & manual/semi-automated 8100 (9) 1067 1800 59.28 Chen et al. (2021)
2015/2020 Automated/semi-automated 50 000 (55) 148 364 40.66 Shugar et al. (2020a)
2017/2020 Automated & manual/semi-automated 8100 (9) 1063 1813 58.63 Chen et al. (2021)
2018/2020 Manual/semi-automated 5400 (6) 1956 2149 91.02 Wang et al. (2020)

Note: the MMU represents the minimum mapping unit that is possible to enable a valid comparison between our product and each of the third-party datasets.
∗ The MMU in the dataset of Zhang et al. (2015) is 3 pixels, finer than 5 pixels in our product, so an MMU threshold of 5 pixels was used for this comparison.

April and July and in November were also employed. Dis-
tribution and changes in glacial lakes primarily represent the
characteristics between August and October. Glacial lakes
evolve with time and space (Nie et al., 2017), and subtle
inter- and intra-annual changes (Liu et al., 2020) for each pe-
riod were ignored. Second, field investigation data are limited
due to the low accessibility of the high mountain environ-
ment in the study area, which restrained the accuracy in clas-
sifying the glacial lake types. Although very high-resolution
Google Earth images were utilized to assist in lake-type inter-
pretation, occasional misclassification was unavoidable. We
implemented two types of classification systems based on a
careful utilization of glacier data, DEM, geomorphological
features, and expert knowledge. However, the lack of in situ
surveys prohibited a thorough validation of the glacial lake
types. Third, the rigorous quality assurance and cross-check
after semi-automated lake mapping assure the quality of our

lake dataset but are still time- and cost-prohibitive. State-of-
the-art mapping methods, such as deep learning (Wu et al.,
2020), Google Earth Engine cloud computing (Chen et al.,
2021), and synergy of SAR and optical images (Wangchuk
and Bolch, 2020; How et al., 2021), could be used in the fu-
ture to balance product accuracy and time cost.

The glacial lake dataset will be updated using newly col-
lected Landsat and Sentinel images at a 5-year interval or
modified according to user feedback. The updated glacial
lake dataset will continue to be released freely and publicly
on the Mountain Science Data Center sharing platform.

7 Data availability

Our glacial lake dataset extracted from Sentinel-2 im-
ages in 2020 and Landsat observation between 1990
and 2020 is available online via the Mountain Sci-
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ence Data Center, the Institute of Mountain Hazards
and Environment, the Chinese Academy of Sciences
at https://doi.org/10.12380/Glaci.msdc.000001 (Lesi et al.,
2022). The glacial lake dataset is provided in both the Esri
shapefile format (total size of 22.6 MB) and the GeoPackage
format (version 1.2.1) with a total size of 9.2 MB, which can
be opened and further processed by open-source geographic
information system software such as QGIS.

8 Conclusions

Glacial lake inventories of the entire China–Pakistan Eco-
nomic Corridor in 2020 were provided based on Landsat and
Sentinel-2 images using a threshold-based semi-automated
mapping method. Both Landsat- and Sentinel-2- derived
glacial lake datasets show similar characteristics in spatial
distribution and the statistics of count and area. By con-
trast, the glacial lake dataset derived from Sentinel-2 images
with a spatial resolution of 10 m has a lower mapping error
and more accurate lake boundary than those from 30 m spa-
tial resolution Landsat images, whereas Landsat imagery is
more suitable to analyze spatiotemporal changes at a longer
timescale due to its long-term archived observations at a con-
sistent 30 m spatial resolution starting from the late 1980s.

Glacial lakes in the study area remain relatively stable with
a slight increase in number and area between 1990 and 2020
according to Landsat observations. Our dataset reveals that
2154 glacial lakes in 1990 covering 85.1± 14.66 km2 in-
creased to 2234 lakes with a total area of 86.31±14.98 km2.
The same mapping method and rigorous workflow of quality
assurance and quality control used in this study reduced the
error in multi-temporal changes of glacial lakes.

The error estimation method of Hanshaw and Bookhagen
(2014) for pixel-based lake mapping was improved by re-
moving repeatedly calculated edge pixels that vary with lake
shape. Therefore, the newly proposed method reduces the es-
timated value of uncertainty from satellite observations. The
average relative error is ±17.36 % for the Landsat-derived
dataset and ±8.15 % for the product from Sentinel-2.

Our glacial lake dataset contains a range of critical pa-
rameters that maximize their potential utility for water re-
source and GLOF risk evaluation, cryosphere–hydrological,
and glacier–lake evolution projection. The dual classifica-
tion systems of glacial lake types were developed and are
very likely to attract broader researchers and scientists to
use our datasets. In comparison with other existing glacial
lake datasets, our products were created through a thorough
consideration of lake types, cross-checks, and rigorous qual-
ity assurance and will be updated and released continuously
in the Mountain Science Data Center. As such, we expect
that our glacial lake dataset will have significant value for
cryospheric–hydrology research, the assessment of water re-
sources, and glacier-related hazards in the CPEC.

Appendix A: Tutorial for the improved uncertainty
estimating method

The equation of Hanshaw and Bookhagen (2014) was origi-
nally proposed for pixelated polygons (such as a polygon di-
rectly extracted from a remote sensing image) and performed
more robustly than manually digitized polygons (where ver-
tices do not necessarily follow the pixel edges). Our im-
proved method also performs better for pixelated polygons.
This tutorial is dedicated to help implement our improved
uncertainty estimating method.

A1 The procedure of uncertainty estimating method
(using ArcGIS (© Esri) as an example)

1. Removing redundant nodes (optional)

We found that a small proportion (∼ 1%) of the pixelated
lake polygons (directly extracted from satellite images) have
redundant nodes, which affects the value of inner nodes. If
no redundant nodes exist, this step can be skipped. Or, we
recommend using the “Simplify Polygon” tool in ArcGIS to
remove those nodes (Fig. A1).

– Open the Simplify Polygon panel.

– Input your dataset.

– Set the output path and output file name.

– Choose the simplification algorithm. We recommended
“POINT_REMOVE”.

– Set the tolerance of the simplification algorithm. In this
step, we need to ensure that the polygon boundaries re-
main unchanged after deleting redundant nodes. Gener-
ally, a tolerance of 1 m will suffice, or you can adjust the
threshold to your satisfaction.

2. Calculating the total number of nodes using ArcGIS
(Fig. A2)

– Add a new field in the attribute table of the dataset.

– Open Field Calculator.

– Switch the parser to Python mode, and enter
“!shape.pointcount!” in the blue box to calculate the to-
tal number of nodes for each glacial lake boundary.

3. Calculating the number of inner nodes

For polygons without islands (Fig. A3), use Eq. (5). An inner
node is a polygon vertex where the interior angle surrounding
it is greater than 180◦. An outer node is the opposite of the
inner node, where the interior angle is less than 180◦. We
found that the outer nodes are usually four more than the
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Figure A1. Input and option for Simplify Polygon in ArcGIS.

Figure A2. Total node calculation in ArcGIS.

inner nodes in our glacial lake dataset. The total nodes in
ArcGIS contain one overlapping node to close the polygon,
meaning the endpoint is also the start point. This extra count
was deleted from the calculation (Eq. 5).

For polygons with islands (Fig. A4), use Eq. (6).

Figure A3. Sketch of outer and inner nodes of various glacial lakes
without island.

Figure A4. Sketch of outer and inner nodes for a glacial lake with
an island.
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Figure A5. Feature To Line tool in ArcGIS.

Figure A6. Feature To Polygon tool in ArcGIS.
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Figure A7. Erase tool in ArcGIS.

We further specify the steps below to help implement
Eq. (6).

Step 1. Detect the number of islands within each polygon.

– Convert the initial lake polygon to a polyline using the
“Feature To Line” tool (Fig. A5).

– Convert the polyline to generate a new polygon
(Fig. A6).

– Erase the new polygon by the initial polygon, which
outputs the islands. Then we can count how many is-
lands there are in each lake (Fig. A7).

Step 2. Calculate the number of inner nodes for each poly-
gon with an island or islands using Eq. (6).
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4. Calculating the uncertainty of lake mapping using
Eq. (4)

Figure A8. Distribution of validation samples (a) and comparison of glacial lakes (b) derived from our Landsat product in 2020 and Wang’s
lake data in 2018.
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