

Supplement of

Reactive nitrogen fluxes over peatland and forest ecosystems using micrometeorological measurement techniques

Christian Brümmer et al.

Correspondence to: Christian Brümmer (christian.bruemmer@thuenen.de)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1: Overview of literature presenting eddy-covariance measurements of reactive nitrogen compounds. Some additional flux campaigns are listed in the publication of Walker et al. (2020).

Paper	Compound	Main aim of study	Dataset length	Flux uncertainty / detection limit	Vegetation type
Ammann et al. (2012)	ΣNr	Suitability of converter for EC measurements	Few weeks are shown for cross-validation with other techniques	~5 ng N m ⁻² s ⁻¹ (upper flux detection limit)	Managed grassland
Brümmer et al. (2013)	ΣNr	Temporal dynamics, controlling factors, and seasonal N budget	11 months	~6.6 ng N m ⁻² s ⁻¹ (upper flux detection limit)	Cropland (winter wheat)
Eugster and Hesterberg (1996)	NO ₂	Deriving transfer resistances	Four different periods with a total of 68 days	Not explicitly given	Rural litter meadow
Famulari et al. (2004)	NH ₃	Suitability of TDLAS system for EC; cross-validation with AGM	2 months	Not explicitly given, only standard deviation of fluxes for entire campaign	Managed grassland
Farmer and Cohen (2008)	HNO ₃ , Σ AN, Σ PN and NO ₂	In-canopy chemical analysis	12 months	Not explicitly given	Ponderosa pine plantation
Farmer et al. (2006)	HNO ₃ , Σ AN, Σ PN and NO ₂	Suitability of TD-LIF system for EC	12 months; shorter periods are shown from different seasons	<1 ng N m ⁻² s ⁻¹ ; <20% relative errors at low wind speed (<1 m s ⁻¹)	Ponderosa pine plantation
Farmer et al. (2011)	Aerosols (NH ₄ , SO ₄ , NO ₃)	Suitability of HR-AMS system for EC	15 days	~0.4 to 6.4 ng m ⁻² s ⁻¹ depending on substance and mode; typical single flux measurement was below DL for NH ₄ fragments	Ponderosa pine plantation
Ferrara et al. (2012)	NH ₃	Comparison of high-frequency correction methodologies using QC-TILDAS	13 days	~75 ng N m ⁻² s ⁻¹ (flux detection limit)	Cropland (sorghum)
Ferrara et al. (2016)	NH3	Temporal dynamics of NH ₃ volatilization after slurry application using QC-TILDAS	~14 days	Only MAE (4700 ng NH ₃ m ⁻² s ⁻¹) and RMSE (12000 ng NH ₃ m ⁻² s ⁻¹) given	Maize stubbles and Italian ryegrass

Ferrara et al. (2021)	NH ₃	Evaluation of measurement errors using QCL spectrometer	21 days	13.6 and 20.7 ng m ⁻² s ⁻¹ at 95 and 99% CI, respectively	Cropland (faba bean)
Horii et al. (2004)	NO, NO ₂ , O ₃	Impacts of temporal dynamics on tropospheric chemistry and parameterizations	7 months, but no time series shown	Not explicitly given	Mixed deciduous forest
Horii et al. (2006)	NO _x , NO _y	Concentration and flux budgets of N _r , inferring HNO ₃ , validation of deposition velocities	5 months, but only time series of ~2 weeks are shown	Not explicitly given	Mixed deciduous forest
Marx et al. (2012)	ΣNr	Suitability of converter for capturing all N _r species at high frequency	1-week validation, 11 months field campaign	Not explicitly given as aim was on concentrations and fast response	Managed grassland and cropland (winter wheat)
Min et al. (2014)	NO, NO ₂	Comparison of gradient and direct flux measurements; within-canopy chemistry of NO _x	6 weeks, no time series shown	<8% for NO flux; <6% for NO ₂ flux; 0.08 ppt m s ⁻¹ (NO); 0.14 ppt m s ⁻¹ (NO ₂)	Ponderosa pine plantation
Moravek et al. (2019)	NH ₃	Quantify impact of adsorption on time response of the system	5 months	Median flux detection limit of 2.15 ng m ⁻² s ⁻¹	Corn crop field
Munger et al. (1996)	NO _y , O ₃	Response of NO _y deposition to environmental conditions	5 years	Only given for concentrations (~50 ppt at the mixed forest site and <10 ppt at the spruce woodland)	Mixed deciduous forest and spruce woodland
Rummel et al. (2002)	NO	Flux pattern within the canopy	3 months	0.07 ng N m ⁻² s ⁻¹	Amazonian rain forest
Sintermann et al. (2011)	NH3	Suitability of a CIMS (chemical ionization mass spectrometry) instrument for EC measurements	Few days	5 ng N m ⁻² s ⁻¹	Crop stubble field and cut grassland
Sun et al. (2015)	NH3	Suitability of the open-path NH ₃ sensor for EC measurements and comparison to other commercial sensors	2 weeks	1.3 +/- 0.5 ng m ⁻² s ⁻¹	Cattle feedlot

Wang et al. (2021)	NH ₃	Suitability of the open-path NH₃ sensor for EC measurements	1 week	7.1 ug N m ⁻² h ⁻¹	Subtropical rice paddy
Whitehead et al. (2008)	NH ₃	Suitability and inter- comparison of different analyzers	2 campaigns, only few days are presented	Not explicitly given	Managed grassland

References in Table S1:

Ammann, C., Wolff, V., Marx, O., Brümmer, C., and Neftel, A.: Measuring the biosphere-atmosphere exchange of total reactive nitrogen by eddy covariance, Biogeosciences, 9, 4247–4261, https://doi.org/10.5194/bg-9-4247-2012, 2012.

Brümmer, C., Marx, O., Kutsch, W., Ammann, C., Wolff, V., Flechard, C. R., and Freibauer, A.: Fluxes of total reactive atmospheric nitrogen (ΣNr) using eddy covariance above arable land, Tellus B, 65, 19770, doi:10.3402/tellusb.v65i0.19770, 2013.

Eugster, W. and Hesterberg, R.: Transfer resistances of NO2 derived from eddy correlation flux measurements over a litter meadow at a rural site on the Swiss Plateau. Atmos. Environ., 30, 1247–1254, 1996.

Famulari, D., Fowler, D., Hargreaves, K., Milford, C., Nemitz, E., Sutton, M. A., and Weston, K.: Measuring eddy covariance fluxes of ammonia using tunable diode laser absorption spectroscopy, Water, Air Soil Pollut. Focus, 4, 151–158, 2004.

Farmer, D. K. and Cohen, R. C.: Observations of HNO3, ΣAN, ΣPN and NO2 fluxes: evidence for rapid HOx chemistry within a pine forest canopy. Atmos. Chem. Phys., 8(14), 3899–3917, doi:10.5194/acp-8-3899-2008, 2008.

Farmer, D. K., Wooldridge, P. J., and Cohen, R. C.: Application of thermal-dissociation laser induced fluorescence (TD-LIF) to measurement of HNO3, Σalkyl nitrates, Σperoxy nitrates, and NO2 fluxes using eddy covariance, Atmos. Chem. Phys., 6, 3471–3486, https://doi.org/10.5194/acp-6-3471-2006, 2006.

Farmer, D. K., Kimmel, J. R., Phillips, G., Docherty, K. S., Worsnop, D. R., Sueper, D., Nemitz, E., and Jimenez, J. L.: Eddy covariance measurements with high-resolution time-of-flight aerosol mass spectrometry: a new approach to chemically resolved aerosol fluxes, Atmos. Meas. Tech., 4, 1275–1289, https://doi.org/10.5194/amt-4-1275-2011, 2011.

Ferrara, R. M., Loubet, B., Di Tommasi, P., Bertolini, T., Magliulo, V., Cellier, P., Eugster, W., and Rana, G.: Eddy covariance measurement of ammonia fluxes: Comparison of high frequency correction methodologies, Agr. Forest Meteorol., 158–159, 30–42, 2012.

Ferrara, R. M., Carozzi, M., Di Tommasi, P., Nelson, D. D., Fratini, G., Bertolini, T., Magliulo, V., Acutis, M., and Rana, G.: Dynamics of ammonia volatilisation measured by eddy covariance during slurry spreading in north Italy. Agric. Ecosys. Environ., 219, 1–13, <u>https://doi.org/10.1016/j.agee.2015.12.002</u>, 2016.

Ferrara, R.M., Di Tommasi, P., Famulari, D., and Rana, G.: Limitations of an Eddy-Covariance System in Measuring Low Ammonia Fluxes. Boundary-Layer Meteorol 180, 173–186, <u>https://doi.org/10.1007/s10546-021-00612-6</u>, 2021.

Horii, C. V., Munger, J. W., and Wofsy, S. C.: Fluxes of nitrogen oxides over a temperate deciduous forest, J. Geophys. Res., 109, D08305, doi:10.1029/2003JD004326, 2004.

Horii, C. V., Munger, J. W., Wofsy, S. C., Zahniser, M., Nelson, D., and McManus, J. B.: Atmospheric reactive nitrogen concentration and flux budgets at a Northwestern US forest, Agr. Forest Meteorol., 136, 159–174, 2006.

Marx, O., Brümmer, C., Ammann, C., Wolff, V., and Freibauer, A.: TRANC – a novel fast-response converter to measure total reactive atmospheric nitrogen, Atmos. Meas. Tech., 5, 1045–1057, https://doi.org/10.5194/amt-5-1045-2012, 2012.

Min, K.-E., Pusede, S. E., Browne, E. C., LaFranchi, B. W., and Cohen, R. C.: Eddy covariance fluxes and vertical concentration gradient measurements of NO and NO2 over a ponderosa pine ecosystem: observational evidence for within-canopy chemical removal of NOx, Atmos. Chem. Phys., 14, 5495–5512, https://doi.org/10.5194/acp-14-5495-2014, 2014.

Moravek, A., Singh, S., Pattey, E., Pelletier, L., and Murphy, J. G.: Measurements and quality control of ammonia eddy covariance fluxes: A new strategy for high frequency attenuation correction, Atmospheric Measurement Techniques, 12, 6059–6078, https://doi.org/10.5194/amt-12-6059-2019, 2019.

Munger, J. W., Wofsy, S. C., Bakwin, P. S., Fan, S.-M., Goulden, M. L., Daube, B. C., Goldstein, A. H., Moore, K. E., and Fitzjarrald, D. R.: Atmospheric deposition of reactive nitrogen oxides and ozone in a temperate deciduous forest and a subarctic woodland: 1. Measurements and mechanisms, J. Geophys. Res., 101(D7), 12639–12657, doi:10.1029/96JD00230, 1996.

Rummel, U., Ammann, C., Gut, A., Meixner, F. X., and Andreae, M. O.: Eddy covariance measurements of nitric oxide flux within an Amazonian rain forest, J. Geophys. Res., 107, 8050, doi:10.1029/2001JD000520, 2002.

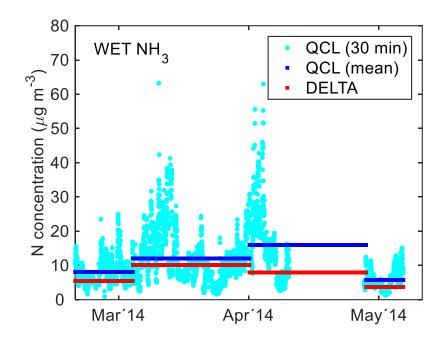
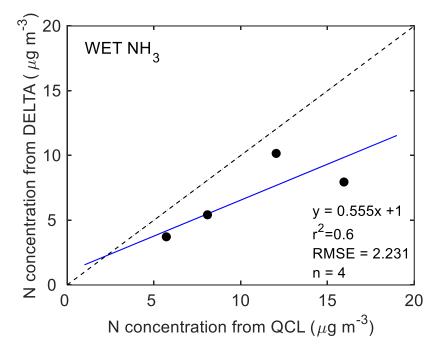
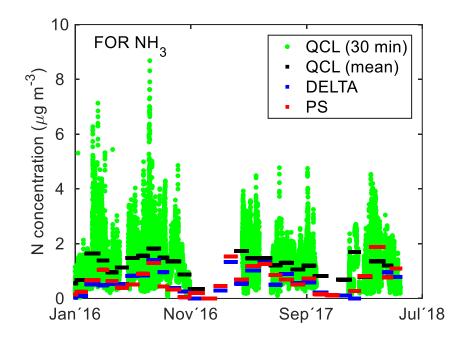
Sintermann, J., Spirig, C., Jordan, A., Kuhn, U., Ammann, C., and Neftel, A.: Eddy covariance flux measurements of ammonia by high temperature chemical ionisation mass spectrometry, Atmos. Meas. Tech., 4, 599–616, doi:10.5194/amt-4-599-2011, 2011.

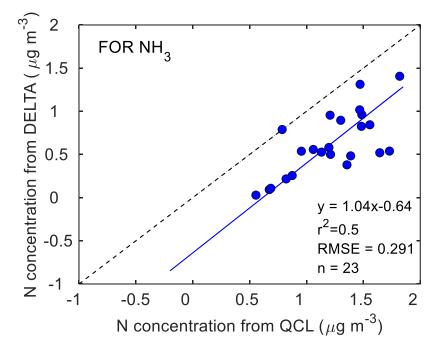
Sun, K., Tao, L., Miller, D. J., Zondlo, M. A., Shonkwiler, K. B., Nash, C., and Ham, J. M.: Open-path eddy covariance measurements of ammonia fluxes from a beef cattle feedlot, Agr. Forest Meteorol, 213, 193–202, <u>https://doi.org/10.1016/j.agrformet.2015.06.007</u>, 2015.

Walker, J. T., Beachley, G., Zhang, L., Benedict, K. B., Sive, B. C., and Schwede, D. B.: A review of measurements of air-surface exchange of reactive nitrogen in natural ecosystems across North America, Science of The Total Environment, 698, 133975, <u>https://doi.org/10.1016/j.scitotenv.2019.133975</u>, 2020.

Wang, K., Kang, P., LU, Y., Zheng, X., Liu, M., Lin, T.-J., Butterbach-Bahl, K., and Wang, Y.: An open-path ammonia analyzer for eddy covariance flux measurement, Agr. Forest Meteorol, 308–309, 108570, <u>https://doi.org/10.1016/j.agrformet.2021.108570</u>, 2021.

Whitehead, J. D., Twigg, M., Famulari, D., Nemitz., E., Sutton, M. A., Gallagher, M. W., and Fowler, D.: Evaluation of Laser Absorption Spectroscopic Techniques for Eddy Covariance Flux Measurements of Ammonia, Environ. Sci. Technol., 42, 2041–2046, 2008.

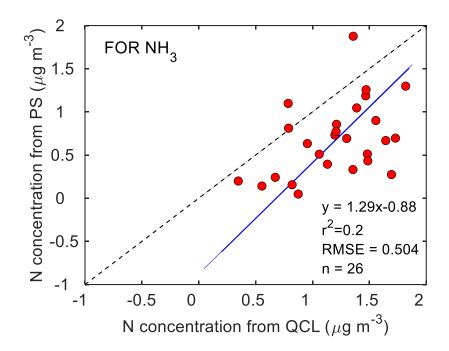
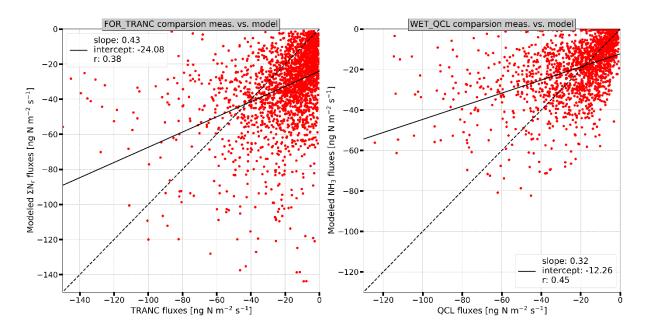
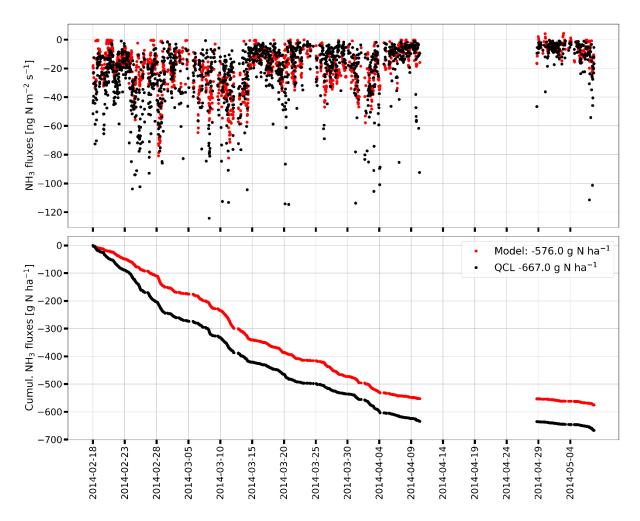





Fig. S1: Concentration time series of NH_3 at the peatland (WET) site. Horizontal red lines correspond to the exposition time of the DELTA denuders. For better comparability, averages of the QCL are shown in blue for the same periods.

*Fig. S2: Scatter plot of NH*³ concentration from QCL and DELTA denuders corresponding to identical periods at the peatland (WET) site.

Fig. S3: Concentration time series of NH₃ at the forest (FOR) site. Horizontal blue and red lines correspond to the exposition time of the DELTA denuders and passive samplers (PS), respectively. For better comparability, averages of the QCL are shown in black for the same periods.

*Fig. S4: Scatter plot of NH*³ concentration from QCL and DELTA denuders corresponding to identical periods at the forest (FOR) site.

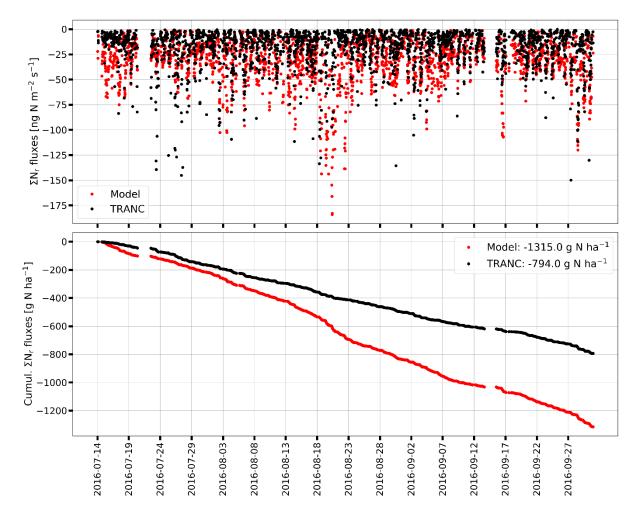

Fig. S5: Scatter plot of NH_3 concentration from QCL and passive samplers (PS) corresponding to the same periods at the forest (FOR) site.

Fig. S6: Measured vs. modeled deposition data in half-hourly time resolution at the forest (FOR, left panel) and peatland site (WET, right panel). FOR data comprise the period mid-July to end of September 2016. For the WET site the entire campaign from February to May 2014 is shown.

Fig. S7: Time series (upper panel) and cumulative curves (lower panel) of measured vs. modeled deposition data in half-hourly time resolution at the peatland site (WET) from February to May 2014.

Fig. S8: Time series (upper panel) and cumulative curves (lower panel) of measured vs. modeled deposition data in half-hourly time resolution at the forest site (FOR) from mid-July to September 2016.